Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biol. Res ; 48: 1-6, 2015. graf, tab
Article in English | LILACS | ID: lil-734621

ABSTRACT

BACKGROUND: The present study was conducted in order to evaluate the fatty acid profile, anti-oxidant and anti-bacterial activities from the microwave aqueous extract of the leaves of three different varieties of Labisia pumila Benth. RESULTS: The chemical analysis of the extract showed that fatty acids (palmitic, palmitoleic, stearic, oleic, linoleic and α-linolenic) acid as the main components in three varieties of L. pumila leaves. Furthermore, the obtained results of the anti-oxidant revealed that L. pumila var. alata contained higher anti-oxidative activities compared to var. pumila and var. lanceolata. However, these values were lower than the tested anti-oxidant standards. On the other hand, the aqueous leaf extracts in all three varieties of L. pumila were also found to inhibit a variable degree of antibacterial activities against eight bacteria (four Gram-positive and four Gram-negative bacteria). CONCLUSIONS: In this study, it was observed the leaves of three varieties of L. pumila exhibited variable patterns of fatty acids and the microwave aqueous extraction possess anti-oxidant and anti-bacterial activities.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Fatty Acids/analysis , Microwaves , Primulaceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Benzothiazoles/metabolism , Disk Diffusion Antimicrobial Tests , Flavonoids/analysis , Free Radical Scavengers/analysis , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Primulaceae/classification , Nitric Oxide/metabolism , Phenols/analysis , Plant Leaves/chemistry , Sulfonic Acids/metabolism
2.
Electron. j. biotechnol ; 14(1): 12-13, Jan. 2011. ilus, tab
Article in English | LILACS | ID: lil-591930

ABSTRACT

As a prerequisite for gene expression analyses in cell cultures of the ornamental crop Cyclamen persicum basic parameters for quantitative real-time polymerase chain reaction (qRT-PCR) have been established including the selection of reference genes using the software tools ‘geNorm’ and ‘NormFinder’. Five potential reference genes have been tested (elongation factor tu (Ef-Tu), putative ABC transporter ATPase, putative conserved oligomeric Golgi (COG) complex component, V-ATPase G subunit 1 and Histone H3-K9 methyltransferase 4 (H3-K9-HMTase 4)). ‘NormFinder’ as well as ‘geNorm’ identified Ef-Tu to be the least stable reference gene while the ranking of the most stable genes differed depending on the algorithm. According to ‘NormFinder’ COG complex component displayed the most stable expression whereas ‘geNorm’ indicated V-ATPase G subunit 1 and a putative ABC transporter ATPase to be the most reliable reference genes. Hence, we concluded to use a normalization factor calculated from the four reference genes V-ATPase G subunit 1, ABC transporter ATPase, Histone H3-K9 methyltransferase 4 (H3-K9-HMTase 4) and COG complex component for normalization of qRT-PCR in cell cultures of Cyclamen persicum.


Subject(s)
Cyclamen , Embryonic Development , Embryonic Development/genetics , Primulaceae/chemistry , Primulaceae/ultrastructure , Polymerase Chain Reaction/methods
3.
Experimental & Molecular Medicine ; : 205-215, 2011.
Article in English | WPRIM | ID: wpr-187632

ABSTRACT

Lysimachia foenum-graecum has been used as an oriental medicine with anti-inflammatory effect. The anti-obesity effect of L. foenum-graecum extract (LFE) was first discovered in our screening of natural product extract library against adipogenesis. To characterize its anti-obesity effects and to evaluate its potential as an anti-obesity drug, we performed various obesity-related experiments in vitro and in vivo. In adipogenesis assay, LFE blocked the differentiation of 3T3-L1 preadipocyte in a dose-dependent manner with an IC50 of 2.5 microg/ml. In addition, LFE suppressed the expression of lipogenic genes, while increasing the expression of lipolytic genes in vitro at 10 microg/ml and in vivo at 100 mg/kg/day. The anti-adipogenic and anti-lipogenic effect of LFE seems to be mediated by the inhibition of PPARgamma and C/EBPalpha expression as shown in in vitro and in vivo, and the suppression of PPARgamma activity in vitro. Moreover, LFE stimulated fatty acid oxidation in an AMPK-dependent manner. In high-fat diet (HFD)-induced obese mice (n = 8/group), oral administration of LFE at 30, 100, and 300 mg/kg/day decreased total body weight gain significantly in all doses tested. No difference in food intake was observed between vehicle- and LFE-treated HFD mice. The weight of white adipose tissues including abdominal subcutaneous, epididymal, and perirenal adipose tissue was reduced markedly in LFE-treated HFD mice in a dose-dependent manner. Treatment of LFE also greatly improved serum levels of obesity-related biomarkers such as glucose, triglycerides, and adipocytokines leptin, adiponectin, and resistin. All together, these results showed anti-obesity effects of LFE on adipogenesis and lipid metabolism in vitro and in vivo and raised a possibility of developing LFE as anti-obesity therapeutics.


Subject(s)
Animals , Mice , 3T3-L1 Cells , Adipogenesis/drug effects , Adipose Tissue/drug effects , Adipose Tissue, White , Anti-Obesity Agents/administration & dosage , Body Weight/drug effects , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Differentiation/drug effects , Eating/drug effects , Fatty Acids/metabolism , Gene Expression/drug effects , Lipid Metabolism/drug effects , Lipids , Lipogenesis/drug effects , Mice, Inbred C57BL , Obesity/prevention & control , PPAR gamma/antagonists & inhibitors , Plant Extracts/pharmacology , Plants, Medicinal , Primulaceae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL